Qualità ottenibile con la rasatura

L'operazione di rasatura può migliorare di 2 o 3 classi la precisione dell'ingranaggio dentato. Tuttavia i risultati finali dipendono non solo dall'accuratezza con cui è progettato e costruito il coltello rasatore, ma da tutta una serie di condizioni che influiscono, in modo più o meno grande, sulla precisione dell'ingranaggio finito.

Si possono suddividere queste condizioni nelle seguenti categorie:

Condizioni del pezzo

- Profilo della dentatura (normale, con scarico di protuberanza, con smusso alla sommità, con profilo modificato)
- · Qualità della dentatura
- Soprametallo per la rasatura
- Materiale lavorato

Sistema di rasatura e condizioni di lavoro

- In seguito si illustreranno i vari metodi di rasatura, la cui scelta dipende sia dalle macchine disponibili, sia dalla geometria generale del pezzo da lavorare.
- La scelta della velocità di taglio, degli avanzamenti, del numero di passate sono determinanti per la buona riuscita dell'operazione. A volte bisogna ricercare le condizioni di lavoro ottimali con prove pratiche.

> Stato della rasatrice e sistemi di bloccaggio del pezzo

- E' evidente che la macchina rasatrice deve essere in buono stato di funzionamento. Non ci devono essere vibrazioni, flessioni, giochi sui mandrini, eccentricità nella rotazione del pezzo e del coltello e nemmeno oscillazioni assiali.
- Il pezzo deve essere bloccato correttamente, con flangie che arrivino il più vicino possibile alla dentatura e con sistemi e forze che impediscano flessioni, slittamenti o rotazioni eccentriche.

Cosa si può ottenere con la rasatura.

- Migliora la precisione del profilo di 2 3 classi DIN
- ✓ Migliora la precisione dell'elica di 2 3 classi DIN
- ✓ Migliora la precisione della divisione di 1 2 classi DIN
- ✓ Un errore di eccentricità viene trasformato, con la rasatura, in un errore cumulativo di passo
- ✓ Elimina gli avvallamenti e le irregolarità lasciate dall'operazione di dentatura
- ✓ Produce una superficie con una rugosità eccellente, paragonabile a quella di una superficie rettificata (R_a = 0,4 0,6 micron)
- ✓ Si possono ottenere ingranaggi anche di classe 4 (DIN 3962), ma con operazione di pre-rasatura ben eseguita, con molta cura nella rasatura, con lunghi tempi di rasatura e caratteristiche generali del pezzo favorevoli alla rasatura.

Con la rasatura si possono costruire ingranaggi che hanno un profilo modificato rispetto a quello teorico ed anche l'elica normalmente è modificata, cioè presenta la cosiddetta bombatura, cioè una convessità nel senso longitudinale.

Tutte queste correzioni dei parametri teorici sono volute nel pezzo per ridurre la sua rumorosità durante il funzionamento e sono ottenibili, fino ad un certo punto, modificando opportunamente il coltello rasatore.

Oltre a ciò si possono ottenere sull'ingranaggio, denti leggermente conici, partendo da un pezzo dentato cilindrico.

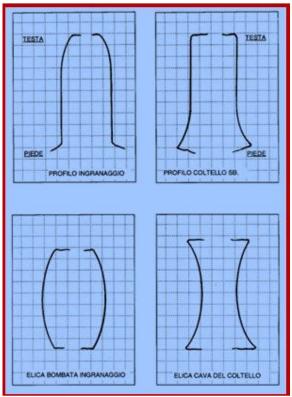
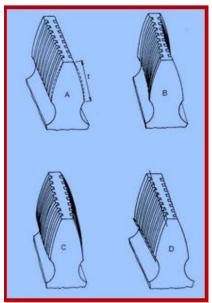



Fig. N°1- Indicazione schematica di modifica del profilo e dell'elica sull'ingranaggio e corrispondente correzione di profilo ed elica sul coltello

Ma le possibili varianti sul profilo e sull'elica di un coltello sono numerose e dipendono anche dal tipo di ingranaggio che si vuole lavorare.

Nella figura N°2 sono indicati alcuni esempi di esecuzione speciale.

Fig. N°2- Esempi di esecuzione di profili ed eliche (a)-Con profilo cava per ottenere un ingranaggio con profilo concavo (bombato). $(t = tratto \ utile \ del \ profilo).$

- (b)- Con elica cava per ottenere un ingranaggio con elica concava (bombata)
- (c)- Con elica concava (bombata) per rasare ingranaggi interni
- (d)- Con dente conico per produrre dentature leggermente coniche

Prima di entrare nei dettagli di quanto sopra esposto, vediamo quali sono le precisioni degli ingranaggi ottenibili con la rasatura e dove sono impiegati di norma questi ingranaggi.

Nella tabella N°1 sono elencate le classi di precisione DIN secondo la tab. 3962 e gli impieghi normalmente ad esse connessi, bisogna precisare però, che c'è una grande discrezionalità nella scelta della qualità degli ingranaggi, tanto più che il risultato finale, cioè la sua rumorosità a ruotismo funzionante, dipende da moltissimi altri elementi che poco hanno a che fare con la precisione dell'ingranaggio.

Già da queste prime pagine si capisce che la finitura degli ingranaggi con l'operazione di rasatura è una questione delicata che richiede un'attenzione particolare a tutto ciò che è collegato, direttamente o indirettamente con essa.

Sopra ogni cosa però, è bene ripeterlo, la precisione finale dipende in buona misura dalle deformazioni dovute al trattamento termico, con questa ultima operazione la precisione si riduce di 1 o 2 classi DIN, in funzione del tipo di trattamento termico, della forma del pezzo e della qualità del materiale lavorato.

Classe DIN	Campo d'impiego	Note
3	Master di precisione per le sale metrologiche	Normalmente sono ingranaggi rettificati
4	Master di comune impiego, ruotismi su apparecchi di misura, ruotismi d'aereo con alta coppia trasmessa, macchine utensili di precisione	In casi eccezionali si possono ottenere con una rasatura, ma non possono essere poi trattati termicamente
5	Ruotismi d'aereo, macchine utensili, marce alte per scatole cambi di autovetture, bus, camion, apparecchi di misura	Si può ottenere questa precisione con una buona rasatura, ma in genere si perde questa qualità dopo il trattamento termico
6	Scatole cambio di autovetture e di veicoli industriali, macchine utensili, riduttori di velocità.	Si può ottenere abbastanza facilmente questa qualità con la rasatura o dopo il trattamento termico partendo da una classe DIN5.
7	Precisione standard per le scatole cambio di autovetture e di veicoli industriali. Sono usate in riduttori a basse velocità	Qualità standard di una rasatura normale. Non ci sono particolari problemi a mantenere questa qualità dopo il trattamento termico
8	Marce basse per autovetture e veicoli commerciali, trattori macchine agricole, macchine utensili	Nessun problema di rasatura.Trattamento termico normale, a patto che la geometria generale del pezzo non sia troppo sbilanciata
9 –10	Trattori agricoli, ruotismi secondari nelle costruzioni meccaniche, riduttori di velocità di tipo generale.	Normalmente sono finiti con la dentatura di creatore o di coltello stozzatore.
11 – 12	Macchine agricole in generale, meccanismi di scarsa qualità.	Idem

Tabella N°1 - Classificazione secondo Tabella DIN 3962

Come si è potuto notare, quando si parla di precisione degli ingranaggi, si citano normalmente le norme DIN 3962.

Si fa riferimento a queste norme perché sono quelle universalmente conosciute, ma esistono altre normalizzazioni importanti che a volte si trovano su alcuni disegni.

Nella tabella N°2 è riportata una comparazione tra le diverse classificazioni della precisione prevista nei principali paesi industrializzati.

La corrispondenza tra i diversi standard è solo approssimativa, perché non copre esattamente tutti gli errori.

DIN	UNI	JIS	AGMA	BSS
Germania	Italia	Giappone	USA	Inghilterra
1	1			
2	2			
3	3	0		
4	4	1	12	A1
5	5	2	11	A1
6	6	3	10	A2
7	7	4	9	A2
8	8	5	8	В
9	9	6	7	С
10	10	7	6	С
11	11		5	D
12	12	8		D
				D

Tab. N°2 Comparazione tra le diverse classi di precisione nelle varie normalizzazioni